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Abstract—A cyber-physical system (CPS) is an integration of
computation with physical processes whose behavior is defined
by both computational and physical parts of the system. In
this paper, we present a view of the challenges and oppor-
tunities for design automation of CPS. We identify a com-
bination of characteristics that define the challenges unique
to the design automation of CPS. We then present selected
promising advances in depth, focusing on four foundational
directions: combining model-based and data-driven design meth-
ods; design for human-in-the-loop systems; component-based
design with contracts, and design for security and privacy. These
directions are illustrated with examples from two application
domains: smart energy systems and next-generation automotive
systems.

Index Terms—Cyber-physical systems, design automation, for-
mal verification, formal specification, machine learning, synthesis,
human-robot interaction, security, privacy, energy management,
automotive engineering.

I. INTRODUCTION

ACYBER-PHYSICAL system (CPS) is an integration of
computation with physical processes whose behavior is

defined by both computational and physical parts of the
system [1]. Embedded computers and networks monitor and
control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa.
Depending on the characteristics of CPS that are empha-
sized, they are also variously termed as embedded systems, the
Internet of Things, the Internet of Everything, the Industrial
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Internet, etc. Examples of CPS include today’s automobiles,
fly-by-wire aircraft, medical devices, power generation and
distribution systems, building control systems, robots, and
many other systems. As an intellectual challenge, CPS is about
the intersection, not the union, of the physical and the cyber
worlds. It is not sufficient to separately design, analyze, and
understand the physical components and the computational
components, and then to connect them together. To enable
the integration of different components including computation,
networking, and physical processes, we must understand and
design for their interaction.

CPSs have been around for a long time, but it is only
recently that the area has come together as an intellectual dis-
cipline. As a result, even though tools and techniques for the
design automation of CPS exist in certain categories, there is
not yet a widely-used design methodology, supported by tools,
for CPS as there is, for example, for digital circuit design.
Additionally, CPS are more complex than integrated circuits
along several dimensions. Indeed, there is not a single “design
space” for CPS as there is for digital circuits; in fact, the
commonalities in the design problems for different CPS appli-
cations arise from the combination of the following features.
Today’s CPS are heterogeneous entities that span the cyber and
physical worlds, hardware and software, sensors and actuators,
etc. They are also increasingly distributed systems, often of
a large scale. They must operate in highly dynamic environ-
ments and for dynamically-changing objectives, and therefore,
must be adaptive. Finally, many CPS operate in concert with
human operators, and the human aspect of the design of such
systems must be carefully considered. We detail this combi-
nation of characteristics in Section II and make the case that,
taken together, this combination of characteristics needs signif-
icant advances in the theory, techniques, and tools for design
automation of CPS.

This need is a significant opportunity for the design automa-
tion community. The opportunity extends across the entire
design process including specification, modeling, language
design, programming, simulation, verification and valida-
tion, synthesis equivalence and refinement checking, mapping,
performance analysis and optimization, interface design, net-
work design, testing, debugging, diagnosis and repair, etc. We
contend that each of these categories needs more advances in
fundamental theory, techniques, and tools in order to make
the design of CPS as routine and their behavior as predictable
as the design and operation of digital systems is today. We
need new design methodologies for CPS with impact compa-
rable to that of the register transfer level (RTL) design flow
for digital circuits. Moreover, the opportunity to create new
design methodologies for CPS is amplified by the growing
availability of data, both on the design of systems and on their
operation in the field. In this paper, rather than enumerating
the many specific opportunities for design automation of CPS,
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we focus on an exposition of selected foundational directions
(see Section III). We illustrate these directions with exam-
ples from two application domains: 1) smart energy systems
and 2) next-generation automotive systems (Section IV). This
paper concludes in Section V with an outlook to the future for
design automation for CPS.

This paper is not intended to be an exhaustive survey of
work on design automation of CPS. We focus on selected top-
ics that we believe hold much promise for future work. Certain
important recent efforts that fall outside these topics are not
covered. The reader is referred to other excellent articles for a
broader view of the landscape for design automation of CPS
(see [2]–[5]).

II. CHALLENGES

The unique design challenges for CPSs emerge from the
following combination of characteristics.

1) Hybrid: As mentioned earlier, CPS is about the
intersection of the computational and physical worlds.
For this reason, the modeling, design, and analysis of
CPS requires effective theory and tools to reason about
hybrid systems that combine discrete and continuous
dynamics.

2) Heterogeneous: The components of a CPS are of various
types, requiring interfacing and interoperability across
multiple platforms and different models of computation.

3) Distributed: In today’s CPSs, components are typi-
cally networked, and can be separated physically and/or
temporally.

4) Large-Scale: The size of CPSs, measured in terms of
the number of primitive components a system is made
up of, is growing rapidly, leading to a “swarm” of sen-
sors, actuators, computation, and communication devices
interconnected and generating vasts amount of data.

5) Dynamic: The environment of the CPS evolves con-
tinually, and thus the design and operation of the
system must account for such dynamic changes in the
environment. Moreover, the environment can behave
adversarially, actively trying to violate desired system
properties.

6) Adaptive: Given a dynamic environment, the CPS must
adapt to it, possibly online. The system may employ
machine learning to adapt to a changing environment.
The distinction between “design-time” and “run-time”
is thus blurred.

7) Human-in-the-Loop: Several CPS operate in concert
with humans: they involve human operators or interact
with humans and human-controlled systems in their
environment. Examples include semiautonomous vehi-
cles (where “self-driving” autonomous controllers must
interact with human drivers and pedestrians) and robotic
surgical devices (where a doctor or nurse must coop-
erate with an autonomous controller to achieve their
objective). The design of such systems must necessarily
consider as a central aspect the role of and interface to
the human(s) in the loop.

These characteristics may seem very different from each other.
However, in our opinion, the major design challenges for CPS
stem from how these characteristics come together in real
systems. For example, in order to verify advanced driver assis-
tance systems (ADASs) in automobiles, one must consider
that these are hybrid systems operating in a dynamic envi-
ronment that interact with humans and use machine learning
components. The design tools must be capable of handling
this combination and the resulting concerns.

Thus, the overarching challenge for the design automation
community is to develop theory, techniques, and tools for the
design of CPS with the above combination of characteristics
in order to ensure that the designed systems are dependable,
secure, and high performance. In turn, we believe that this
challenge needs a design automation methodology with the
following blend of features.

1) Cross-Domain: The hybrid and heterogeneous nature of
CPS means that the tools for their design must neces-
sarily be cross-domain. For example, there is a need for
techniques for co-simulating different components of a
CPS, such as the mechanical aspects of a robot’s motion
with the electronic and software processes that control
its actions.

2) Component-Based: The increasing large scale of CPS
implies that the only way to deal with growing com-
plexity is to perform design in a modular fashion.
Specifically, there is a need for establishing libraries
of reusable, verified components with clearly specified
interface contracts. Tools for enabling such component-
based, contract-based design are essential.

3) Learning-Based: The growing amount of data on CPS,
coupled with the need for systems to be adaptive and
handle dynamic environments points to the need for
CPS design based on data-driven learning. However,
such learning must be coupled with principled model-
based design (MBD) and formal methods that can give
guarantees on correct operation. The development of
such learning-based design automation techniques is an
important need going forward.

4) Time-Aware: One of the key aspects connecting the
cyber and physical worlds is time. In particular, in order
to understand the joint dynamics of the cyber and phys-
ical components of a CPS, one must come up with
a suitable abstraction of time that accurately captures
their joint evolution. The distributed nature of many
CPS adds another level of complexity, potentially vary-
ing the notion of time across different components of the
system. CPS design tools must be time-aware and encap-
sulate suitable abstractions in order to ease the design
process.

5) Trust-Aware: The design of distributed CPS that oper-
ate in dynamic, adversarial environments must address
fundamental issues of trust. Security and privacy, which
previously were secondary concerns, have now become
top design concerns for CPS. Moreover, the cyber-
physical nature of systems is bringing new security and
privacy concerns to the fore. Tools for design automa-
tion must be able to model threats, design for them, and
analyze systems for vulnerabilities.

6) Human-Centric: It is becoming increasingly clear that
design automation tools for CPS must both address
the human aspect of design and of the systems being
designed. Tools must complement human ingenuity by
automating the tedious aspects of design while allow-
ing humans to express their creativity as well. Similarly,
given the growing importance of human-in-the-loop CPS
in everyday life, it is critical to develop tools to help
model, design, and verify such systems.

In the following sections, we explore the opportunities for
CPS design automation in more depth.

III. FOUNDATIONAL DIRECTIONS

We list four directions that, in our opinion, highlight the
foundational aspects of design automation for CPS. Each of
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these directions involves developing a unique set of features
that we described in the previous section. Moreover, each
direction represents a significant shift from the traditional
paradigms in design automation. These directions, however,
are not orthogonal to each other and should be viewed as
addressing different but cross-cutting aspects of automating
CPS designs. For example, the combination of model-based
and data-driven approaches (Section III-A) may very well be
applied to the analysis and synthesis of human-in-the-loop
systems (Section III-B).

A. Model-Based Design Meets Data-Driven Design

MBD is a paradigm for system design in which the design
process begins with the creation of high-level models which
are then used to guide further development, simulation, veri-
fication, and testing of the system. MBD has found industrial
use in the field of embedded systems, particularly in auto-
motive and avionics applications [6], [7]. The MBD approach
seeks to place an emphasis on abstract, mathematical modeling
as a first step before getting into low-level details of the
implementation. The availability of such models, with associ-
ated formal (mathematical) specification of desired/undesired
behaviors, can aid in simulation and verification early in
the design process, thus weeding out bugs in the logic of
the system at a point where the cost of finding and fix-
ing them is still relatively low, and improving overall system
dependability.

In certain settings, however, the model-based approach falls
short. Consider, for example, a system operating in a highly
variable, uncertain environment, such as a self-driving vehicle.
In this case, constructing a good model of the environment a
priori can be very difficult. Instead, one might rely on exten-
sive field testing to collect data about the environment of the
vehicle, and then employ algorithms that learn from the data
in order to compute the optimal control strategy. Moreover, the
genesis of such an approach goes back several years, to ideas
such as adaptive control [8], [9]. At the present time, a promi-
nent example of this data-driven, learning-based approach are
Google’s (mostly) self-driving cars [10]. The seeming suc-
cess of this approach, paired with the availability of increasing
amounts of data, leads one to ask: is the data-driven approach
the right one?

We argue instead that one needs a combination of model-
based and data-driven approaches. Today’s CPSs need to
be both dependable and adaptive. A model-based approach
facilitates the use of formal methods—computational proof
techniques—to improve dependability. A data-driven approach
facilitates adaptation by learning from the data. For CPSs
that operate in safety-critical or mission-critical settings
and dynamic, uncertain environments, both approaches are
essential.

The confluence of MBD with data-driven design has pro-
duced several exciting directions for future work. We elaborate
on two particularly compelling and foundational directions.

1) Formal Inductive Synthesis: How can we employ data-
driven learning to improve MBD?

In order to answer this question, let us examine the process
of MBD. The first step is to create models, including require-
ments on the system to be designed, and assumptions on its
operating environment. One must gain assurance, through the
use of systematic simulation and proof methods, that the model
of the system, when composed with the model of its envi-
ronment, satisfies the desired requirements. Next, one must
generate implementations from the models in a systematic

Fig. 1. Three main elements of the SID approach.

manner that guarantees that the behavior of the implementation
conforms to the model. Such conformance checking requires
additional verification. The implementations also need to be
mapped to a physical platform and various platform-specific
requirements must be verified, such as conformance to timing
requirements.

It is clear from the above description that synthesis is a
central and recurring component of the MBD process. Models
and specifications must be synthesized. Implementations must
be synthesized. Platform-specific features must be synthesized.
Perhaps more surprisingly, the verification steps also involve
synthesis (albeit a different form): the synthesis of “verifica-
tion artifacts” such as inductive invariants, preconditions and
postconditions, assume-guarantee contracts, ranking functions,
etc. In summary, in order to automate the MBD process effec-
tively, one must devise efficient procedures for the synthesis
of a variety of formal artifacts.

How best can this synthesis be done? One approach is
deductive, to formulate and systematically apply rules that
transform a high-level specification into the artifact to be syn-
thesized. However, it can be difficult, a priori, to specify all
the needed transformation rules, and the combinatorial search
does not usually scale to industrial problems. Can one instead
leverage data available from past design experience as well as
data generated during the MBD process (e.g., from simulations
of models) to automate the tedious aspects of synthesis?

A particularly effective approach that has emerged in recent
years is based on the combination of induction and deduction.
We use the term induction in its classic sense as the process of
inferring a general law or principle from observation of par-
ticular instances.1 Machine learning algorithms are typically
inductive, generalizing from (labeled) examples to obtain a
learned concept or classifier [11], [12]. Inductive synthesis is
the process of synthesis from examples (sample data). Formal
inductive synthesis (FIS) [13] is the process of synthesizing
from examples with formal guarantees, and it is this flavor of
inductive synthesis that is relevant in the MBD context.

An effective approach to solve an FIS problem combines
three elements: 1) a structure hypothesis; 2) induction; and
3) deduction. The structure hypothesis is an encapsulation of
designer insight in a syntactic form. It can take the form of a
template, a component library, a partial program, etc. We refer
to this approach as the SID methodology, where the three let-
ters stand for the three elements: 1) structure; 2) induction; and
3) deduction. Fig. 1 depicts the above three elements where an
inductive engine I makes queries to a deductive oracle D and
receives responses in turn. A mathematical framework imple-
menting the SID methodology is the oracle-guided inductive
synthesis (OGIS) approach [13].

The SID methodology has been effectively applied to sev-
eral practical problems in the design automation of CPSs,

1The term “induction” is often used in the EDA/verification community
to refer to mathematical induction, which is actually a deductive proof rule.
Here we are employing induction in its more classic usage arising from the
field of Philosophy.



1424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2017

including requirement generation [14], assumption genera-
tion [15], controller synthesis [16], switching logic synthe-
sis [17], timing analysis of embedded software [18], [19], and
Lyapunov analysis for control [20]. We have just begun to
scratch the surface of what is possible with an approach that
integrates induction from data with deduction from models,
and many exciting future directions beckon. For further details,
we refer the interested readers to this papers on SID [21], [22]
and OGIS [13].

2) Trustworthy Machine Learning: CPSs that include com-
ponents based on machine learning have certain distinctive
characteristics. First, the mainstream machine learning tech-
niques of today do not perform exact learning—i.e., they may
have a (hopefully) small mis-classification error. Second, they
are only as accurate as the data used to train them with. Thus,
if machine learning methods are to be used within safety-
critical CPS, we must develop techniques to verify system
correctness whilst considering their potential inaccuracies. In
other words, we need to develop techniques for trustworthy
machine learning.

What are the general principles for trustworthy machine
learning? This is a nascent topic, and a few proposals are
just emerging [23], [24]. Here we highlight some important
directions (see [24] for more details).

1) From Predictions to Explanations: The nature of such
machine learning algorithms must not just be predictive
but also explanatory. In other words, when the machine
learning algorithm makes a prediction (e.g., classifies
an object in front of a vehicle as a person), it should be
able to support that prediction with a suitable “expla-
nation” encoded in a form amenable to formal analysis.
Such explanations can then be checked against sufficient
conditions for safe operation that have been derived at
design time.

2) Systematic Training: Training and test data for machine
learning algorithms must be systematically generated.
In the ideal case, they must be generated in a manner
so as to give formal guarantees about convergence to
the target concept to be learned. In many cases, this
will require sampling points from a constrained space
subject to requirements on the output distribution. This
is roughly similar to constrained random verification in
electronic design automation, although there are some
key differences as well.

3) Specifications for Learning Components: One challenge
for verifying the correctness of a machine learning com-
ponent is to formulate its specification, i.e., to make
precise what “correctness” means. Since machine learn-
ing is often used to perform tasks otherwise done by
humans, and given that many of these tasks are versions
of the Turing test, it is in general impossible to for-
malize the specification. Even so, it may be possible to
employ instead an end-to-end specification for the over-
all system that uses machine learning, and to combine
that with specification mining to analyze the machine
learning component systematically.

The design of trustworthy machine learning components
thus points to another rich domain for the integration of
machine learning with formal methods. It is thus fertile ground
for future work.

B. Human-in-the-Loop Systems

Several CPSs are interactive, i.e., they interact with one
or more human beings, and the human role is central to the

correct working of the system. Examples of such systems
include fly-by-wire aircraft control systems (interacting with
a pilot), automobiles with “self-driving” features (interacting
with a driver), remote-controlled drones (interacting with a
ground operator), and medical devices (interacting with a doc-
tor, nurse, or patient). We refer to the control in such systems
as human-in-the-loop control systems and the overall system
as a human CPS (h-CPS). The costs of incorrect operation
in the application domains served by these systems can be
very severe. Human factors are often the reason for failures
or “near failures,” as noted by several studies (see [25], [26]).
Correct operation of these systems depends crucially on two
design aspects: 1) interfaces between human operator(s) and
autonomous components and 2) control strategies for such
human-in-the-loop systems.

At the present time, some of the most compelling h-CPS
problems arise from the automotive domain. In particular,
over the past decade, automobiles with “self-driving” fea-
tures (otherwise also termed as ADASs) have made their way
from research prototypes to commercially-available vehicles.
Such systems, already capable of automating tasks such as
lane keeping, navigating in stop-and-go traffic, and parallel
parking, are being integrated into medium-to-high end auto-
mobiles. However, these emerging technologies also give rise
to concerns over the safety and performance of an ultimately
driverless car. For various engineering, legal and policy rea-
sons, a car that is self-driving at all times may not be a reality
for a few more decades. However, semiautonomous driving is
already here, and a myriad of scientific and engineering chal-
lenges exist in the design of shared human and autonomous
control. For these reasons, the field of semiautonomous driv-
ing is a fertile application area for CPS design automation.
Section IV-B2 has a deeper exploration of this application
domain.

In this section, we give an overview of the main challenges
associated with the principled design of h-CPS, including the
following.

1) Modeling: What distinguishes a model of a h-CPS from
a typical CPS?

2) Specification: How do the requirements change for a
h-CPS?

3) Verification: What new verification problems arise from
the human aspect?

4) Synthesis: How can we co-synthesize control and
interfaces for h-CPS?

The reader may find a slightly longer exposition of this
topic, with a particular focus on semiautonomous driving,
in [27].

1) Modeling: The key difference between an h-CPS and a
fully-autonomous system is that, in an h-CPS, we additionally
have the human operator(s) with whom control must be shared.
Therefore, the h-CPS model must contain a representation of
the human operator(s) as well as a subsystem that mediates
between the human operator(s) and the autonomous controller.
We refer to this subsystem as the advisory controller (since it
guides the human operator) or the mixed-initiative controller
(since it blends human and autonomous control), and denote
it by ADVISOR. The design of the human–machine interface,
thus, is also of great importance.

Additionally, in order to give guarantees about an h-CPS
system, one must have a reasonable model of the human oper-
ator. Modeling humans can be tricky. While there is a large
literature on human cognitive modeling, this is usually infor-
mal and performed by experts for specialized domains with
highly-trained operators (e.g., cockpit flight control). In this
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context, it is useful to recall the statement by George Box:
“all models are wrong, but some are useful.” The principled
design of h-CPS requires the judicious use of human models.
Our position is to use formal models of human operators that
are grounded in empirical data. In other words, we propose
that, while the structural form of a model can be informed by
expert guidance, the precise model used for design be inferred
from observations of human behavior.

To summarize, the key points of differentiation between
modeling a h-CPS and modeling a fully-autonomous CPS are
as follows.

1) The use of data-driven human modeling.
2) The inclusion of relevant aspects of the human–machine

interface.
3) The presence of the advisory controller.
2) Specification: Human CPS have certain unique require-

ments which need to be formalized as formal specifications
for verification and control. In addition to traditional forms
of specification, captured through formalisms such as tem-
poral logic, one must also write down specifications relating
to the human operator(s) and the human–machine interface.
Some initial steps have been taken in this regard [27], [28],
formalizing the following meta-specifications.

1) Safe and Correct Autonomy: The h-CPS must preserve
certain key safety properties at all times, and must guar-
antee overall correct operation (as captured by a formal
specification) at all times when the autonomous agent is
in control.

2) Effective Monitoring: The advisory controller should be
able to monitor all information about the h-CPS and its
environment needed to determine which agents (human
or autonomous) must be in control. This is a requirement
on the types of sensors required and their quality and
performance.

3) Minimally Intervening: A primary purpose of includ-
ing an autonomous controller in the system is for
human operators not to have to be in control at all
times. Therefore, we add an optimality requirement:
the advisory controller should minimize interventions
by the human operator(s) to take back control, where
minimality is defined by a suitable cost function.

4) Prescient: Time is a central parameter in the design of
h-CPS. The advisory controller must be able to predict
in advance conditions that may require switching con-
trol from human or autonomous and vice-versa, or other
interventions by the human (e.g., asking to change the
navigation goal).

These meta-properties are just a start. Formalizing and
specializing these meta-requirements for specific application
domains (e.g., semiautonomous driving) and for other human–
machine interaction models is a problem that remains to be
fully solved, and an important direction for future work.

3) Verification and Synthesis: The verification and control
problems for h-CPS depend heavily on the formalisms for
modeling and specification. Thus, one needs to define the latter
formalisms before the verification and control problems can be
effectively tackled. Even so, some general principles are worth
stating.

1) Verification Must Operate on Models Inferred From
Data: It is clear that h-CPS models will include substan-
tial parts that are learned from data that may be incom-
plete and with learning algorithms that have intrinsic
inaccuracies. The models must represent this uncertainty
and inaccuracies as first-class entities, and verification
algorithms must be adapted to operate on such models.

Although some initial results are available [29], [30],
much more remains to be done.

2) Verification Must Provide Quantitative Output: The bulk
of verification techniques target Boolean questions, such
as whether a model satisfies a property or not. However,
with humans in the loop, there is a lot of uncertainty
in the modeling process, and hence Boolean answers
may lose substantial information about risk. Better
quantitative verification methods must be developed.

3) Controller Synthesis Must Yield Both Autonomous
Controller and Advisory Controller: Traditional con-
troller synthesis simply solves for the former. However,
the requirements on the advisory controller can be very
different, such as those that involve human reaction time
and features of the human–machine interface. Thus, con-
troller synthesis must involve a co-design of controllers
and human–machine interfaces.

In summary, the field of h-CPSs is a fertile ground for the
CPS design automation community. There are several excit-
ing directions for future work including human modeling,
novel specification languages to capture requirements unique
to h-CPS, data-driven verification and synthesis, quantitative
verification and synthesis, and co-design of interfaces and
control.

C. Component-Based Design With Contracts

The RTL design flow for digital circuits is one of the major
success stories in electronic design automation. An important
aspect of the RTL flow is its emphasis on component-based
design. This methodology is applied at various levels of
abstraction: high-level RTL source modules, a library of
logic gates and state-holding elements, a technology library,
etc. Component-based design has many benefits: reuse, clean
interfaces, separation of concerns, etc. Naturally, the question
arises: is there a similar component-based design approach
for CPSs?

At present, the answer is a qualified “yes.” The starting
point is to construct the right component library for each
application domain. Such a library must capture the the het-
erogeneous, cyber-physical, dynamic nature of that domain.
While MBD languages such as Simulink/Stateflow and NI
LabVIEW do offer component libraries, these are often too
low-level and without cleanly-specified interfaces with precise
semantics. Moreover, such libraries do not always accurately
abstract relevant features of the underlying platform, such as
timing behaviors.

Fortunately there are some emerging design method-
ologies that one can build upon. Platform-based design
(PBD) [31]–[34] maps a top-down mapping of application-
level constraints with a bottom-up propagation of platform
constraints to find the right composition of platform compo-
nents that meets an application’s requirements. Contract-based
design [2] complements the PBD methodology by adding
a rigorous notion of formal contracts to ensure that com-
position of components maintains desired properties. These
methodologies provide a framework for component-based
design, provided one can come up with the right library of
components, rules of composition, and interface contracts.

The challenge is thus shifted to finding the three
Cs—components, composition, and contracts—for a given
application. As of today, the process of finding these is very
domain-specific. As an illustrative example, we discuss how
component-based design has been successfully demonstrated
for programming teams of robots to achieve coordinated tasks
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Fig. 2. Compositional SMT-driven multirobot motion planning. (a) Top view of sample execution and associated simulation. (b) Nano-quadrotor platform
from KMel robotics [37] (reproduced from [35]).

in a laboratory setting [35]. The tasks are specified in a variant
of temporal logic [36].

In robotics, the traditional motion planning problem is to
move a robot from points A to B while avoiding obstacles.
However, more recently, there is growing interest in extending
this problem along 2-D. The first extension is to impose more
complex requirements on the robot, such as visiting certain
locations “infinitely often.” Such requirements can be conve-
niently specified in a formal notation such as linear temporal
logic (LTL). The second extension is to handle swarms of
many robots executing coordinated plans. Such problems arise
in many application settings, including persistent surveillance,
search and rescue, formation control, and aerial imaging. More
complex requirements require more sophisticated methods to
ensure that the synthesized plans are provably correct. Scaling
planning algorithms to larger swarms requires more efficient
algorithms and design methodologies.

Recent work [35] addresses these challenges with a
two-pronged approach. First, a compositional approach is
employed, where precharacterized motion primitives, based
on well-known control algorithms, are used as a component
library. Each motion primitive is specified in a suitable combi-
nation of logical theories. Second, using an encoding similar
to the one used for bounded model checking [38], a satis-
fiability modulo theories (SMTs) solver [39] is used to find
a composition of motion primitives that achieves the desired
LTL objectives. Fig. 2 depicts a sample result of this approach,
showing the top view of four nano quadrotor robots achieving
a desired LTL specification.

These results are only a first step. There are many more
problems that remain to be solved, including inferring effec-
tive logical characterizations of motion primitives, handling
dynamic, uncertain, and adversarial environments, dealing
with nonlinear dynamics, incremental planning, and scaling
up to an order of magnitude more robots. Even so, it is
important to note that the initial demonstration is a success-
ful realization of the PBD vision, where high-level robotics
applications are mapped to compositions of motion primi-
tives which are implemented in terms of platform-specific
control algorithms. Exploring the full potential of component-
based design for CPS remains an important challenge for the
future.

D. Design for Security and Privacy

Security and privacy have become two of the foremost
design concerns for CPSs today. Security, broadly speaking,
is the state of being protected from harm. Privacy is the state

of being kept away from observation. With embedded and
CPSs being increasingly networked with each other and with
the Internet, security and privacy concerns are now front and
center for system designers.

There are two primary aspects that differentiate security and
privacy from other design criteria for CPS. First, the operating
environment is considered to be significantly more adversar-
ial in nature than in typical system design. We refer to this
aspect as the threat model. Second, the kinds of properties,
specifying desired and undesired behavior, are also different
from traditional system specifications (and often impose addi-
tional requirements on top of the traditional ones). We refer
to this aspect as the security/privacy goals.

These two aspects are also the dimensions along with we
can distinguish the research in CPS security and privacy from
the more traditional field of cyber-security. We outline these
dimensions below.

1) Threat Models With Physical Characteristics: CPS pro-
vides new attack surfaces that lead to new threat models
that have not arisen in traditional cyber-security. One
such class of threat models come under the category
of physical attacks. These are attacks that observe
or modify the physical processes in the system or
its environment. Pure cyber-security approaches fail to
model these physical processes and therefore miss these
attacks. One example of physical attacks are those on
sensors. Recent work has focused on investigating both
threat models and countermeasures for attacks on ana-
log sensors. A main mode of attack has been to employ
electromagnetic interference (EMI) to modify the sensed
signal. Two recent projects have studied EMI attacks
in different applications. Foo Kune et al. [40] investi-
gated EMI attacks at varying power and distances on
implantable medical devices and consumer electronics.
Shoukry et al. [41] studied the possibility of EMI attacks
that spoof sensor values for certain types of automo-
tive sensors. Countermeasures have also been developed
for these attacks [40], [42], [43]. One of these counter-
measures involves secure state estimation using a blend
of SMT solving and convex optimization [43], point-
ing to the form of design automation engines that might
be applicable. Another example involves side channels
attacks, including, e.g., attacks that reveal secrets by
observing physical properties of a system such as timing
or power consumption. For a more detailed introductory
exposition of this topic (see [1]).

2) CPS Security/Privacy Goals: The classes of properties
considered for CPS security and privacy are similar to
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those in traditional cyber-security: they involve integrity,
confidentiality, anonymity, and availability. However,
specific forms of these properties vary. For instance, in
CPS security, one cares about ensuring control-theoretic
properties such as stability under attacks. Similarly, one
may consider differential privacy, but operating over
data streams from reactive systems rather than tables
of data stored in databases [44]. Another important
aspect relates to the tradeoff between different prop-
erties. For instance, in automotive networks, one is
concerned both with authentication of messages sent
between electronic control units (ECUs) on the con-
troller area network (CAN) bus (a security concern)
and with real-time requirements (a timing concern).
Traditional cryptographic protocols for authentication do
not apply “as is,” and one must design customized solu-
tions that provide an appropriate tradeoff between those
competing concerns [45].

We discuss in Section IV several specific instances of secu-
rity and privacy problems in CPS. It is important to note
that security and privacy have become cross-cutting concerns
throughout the design process that must be considered from
the very beginning of the design process; they cannot just be
bolted on as an after-thought.

IV. APPLICATIONS

We now discuss in more detail two application domains:
1) smart energy systems and 2) next-generation automotive
systems. These domains are excellent representatives of CPS
as they have a combination of all characteristics identified in
Section II. For each domain, we first give a high-level moti-
vation for the design problems in that domain, followed by a
survey of some of the important problems along with proposed
solution methods.

A. Smart Energy Systems

The design of smart energy systems spans across multiple
layers, from developing power grids with intelligent energy
generation, transmission and distribution, to constructing com-
mercial buildings and residential homes with smart energy
management schemes. It is an extremely challenging task,
given the scale and heterogeneity of such systems and the strin-
gent requirements on their performance, reliability, security
and cost. Design automation methodologies and tools, such as
the ones discussed in Section III, will be critical for address-
ing these challenges and achieving truly smart energy systems.
Below we discuss some of those approaches, in particular for
the design of smart buildings and homes.

1) Modeling and Design Automation: The traditional
design methodology for large buildings is a top-down
approach. Different building subsystems are designed in iso-
lation by domain experts, the following design documents
flown down after the bid process [46]. Such methodology,
however, is not suitable for designing energy-efficient build-
ings, where the adoption of low energy solutions such as
natural ventilation, active facade and advanced cooling con-
trol require a close interaction among architects, mechanical
engineers, control engineers, and electrical and computer
engineers. A new set of methodologies and tools is greatly
needed to address the heterogeneous building subsystems
in a holistic fashion and provide an automated design
flow.

a) MBD flow and co-design: Yang et al. [46], [47]
proposed an automated design flow for building automation

Fig. 3. Co-design of control algorithm and sensing platform for buildings.

Fig. 4. Co-scheduling of energy supplies and demands for buildings.

and control systems. The flow leverages MBD tools such as
Simulink [48] and Modelica [49] for modeling the heteroge-
neous subsystems, and then converts the models into a unified
intermediate format and explore the design implementation.

Maasoumy et al. [50] presented an approach to co-design
heating, ventilation, and air conditioning (HVAC) control algo-
rithms and embedded sensing platforms through the concept
of interface variables, as illustrated in Fig. 3 to reduce build-
ing energy consumption while meeting cost and occupancy
comfort requirements. The work shows that the selection of
HVAC control schemes significantly depends on the number,
location and accuracy of the temperature sensors, and therefore
necessitates the need for a co-design approach.

Wei et al. [51], [52] showed how to co-schedule hetero-
geneous energy demand types, including HVAC control and
electric vehicles charging with heterogeneous energy supplies
such as grid electricity and battery storage in a holistic model
predictive control-based formulation, as shown in Fig. 4. The
results show that such co-scheduling approach can effectively
leverage the flexibility in building energy scheduling and sig-
nificantly reduce energy consumption and peak demand. In
these approaches, simplified RC network models are used to
capture the thermal dynamics of building rooms and walls.
Compared to more detailed models such as the ones used in
the EnergyPlus tool from the Department of Energy [53], these
simplified models provide the efficiency needed for design
space exploration and runtime management.

Recently, the paradigm of contract-based design has been
applied for smart buildings and their integration into the smart
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grid [54], [55]. In particular, assume-guarantee contracts are
formalized between the buildings and the grid to leverage the
HVAC scheduling flexibility and optimize the ancillary service
power flow from buildings.

b) Leveraging measurement data: There have been a
number of approaches for calibrating building energy models
based on real-time measurement data [56]–[60]. However, for
detailed models (e.g., those in EnergyPlus or TRNSYS [61]),
the calibration procedures could be quite labor-intensive and
time-consuming [62]. In [63] and [64], a meta-model based
approach is proposed to reduce the complexity of building
energy models, which may then enable fast model calibration
and efficient optimization of building design and operation.

Real-time sensor data has also been used with machine
learning approaches for recognizing and predicting human
activities in buildings [65]–[67]. Such information may then be
leveraged for improving building energy efficiency [68]–[70],
occupancy comfort, and safety and security.

2) Security and Privacy: For smart energy systems from
individual buildings and homes to the entire grid, security and
privacy have become a pressing concern. In below, we will dis-
cuss some of those challenges and proposed design automation
solutions, in particular regarding pricing attacks and energy
thefts.

a) Pricing attacks: The prevailing U.S. electricity market
employs the dynamic electricity pricing scheme to guide the
energy scheduling techniques. The basic idea is to set differ-
ent electricity prices during different time intervals, with high
prices at peak energy usage hours to discourage significant
energy consumption at those times. Precisely, the predictive
guideline pricing and the real-time pricing for billing cus-
tomers are jointed deployed. The predictive guideline pricing
provides an estimated price per time interval within the next 24
hours, while the real-time pricing computes the bill based on
the recent actual energy consumption. The predictive guideline
pricing is expected to match the real-time pricing, although this
is often not the case in practice. Based on these pricing models,
there are many automatic scheduling techniques developed in
the literature. These include techniques based on dynamic pro-
gramming [71], linear programming [72], mixed-integer linear
programming [73], and game theoretic scheduling [74], [75].

A pricing guided scheduling framework may be vulnerable
to security threats. Modern smart meters installed at homes
and buildings are not merely measurement devices but also
equipped with advanced operating systems that enable auto-
matic scheduling of various appliances and devices. If the
predictive guideline pricing seen at a smart meter is manip-
ulated in a pricing attack, the smart home schedulers could
make wrong scheduling decisions causing detrimental impacts.
For instance, peak energy usage increase in the local com-
munity may potentially lead to blackouts [76]. Such negative
impacts become quite significant when a wide range of smart
meters are attacked, e.g., through malware propagation [77].

b) Energy thefts: The pricing attack hacks the inputs of
smart meters. On the other hand, the outputs of smart meters,
which are the measurements of energy consumption during
a past time window, can also be manipulated. For example,
if a smart meter only reports 10 KWh to the utility while it
actually measures 100 KWh, the 90 KWh difference can be
viewed as being stolen [78].

c) Detection methods using POMDP: The system level
impacts of pricing attack and energy theft have been analyzed
in several works such as [76] and [78]. The detections of those
attacks are built upon the partially observable Markov deci-
sion process (POMDP) models. The simulation results in [76]

Fig. 5. Cross-layer protection against attacks.

indicate that POMDP-based detection can reduce the energy
bill and peak-to-average ratio (which is a ratio indicating
energy balance) by 59.3% and 62.3%, respectively, compared
to a natural heuristic approach for pricing attack. Similarly,
POMDP-based detection can reduce the bill increase by 78.3%
while successfully detecting more than 90% energy theft [78].
Alternatively, sensors such as feeder remote terminal units
can be inserted into the local power distribution network to
improve the detection rate of energy theft [79], [80] when
smart meters are assumed to be hacked independently. For
the more general case, it would be interesting to investigate
how sensor deployment can benefit the POMDP model if
they are deployed in an interleaving fashion. It would be also
interesting to analyze the attacks jointly performing pricing
attack and energy theft.

d) New pricing frameworks: Furthermore, new pric-
ing frameworks have been proposed to better leverage the
scheduling flexibility at buildings and homes and increase
the penetration of demand response. For instance, in [81], a
proactive demand participation scheme calculates the build-
ing scheduling flexibility based on guideline pricing, and then
captures such flexibility as demand-bid curves for grid-level
optimization. As observed in [81] and [82], such scheme
faces potential pricing attack on the guideline pricing and also
possible manipulation on the demand-bid curves.

e) Cross-layer detection: Finally, it is worth noting that
at least part of detection code for pricing attack or energy
theft needs to be implemented on the smart meter, while the
smart meter itself is hacked. Thus, to ensure the reliable exe-
cution of the detection code, cross-layer detection techniques
would be desirable, as illustrated in Fig. 5. There has been lit-
tle research in this domain, but this is certainly an interesting
future research direction.

B. Next-Generation Automotive Systems

The design and implementation of automotive electronic
systems have become increasingly challenging, with grow-
ing functional complexity in scale and features, as well as
the adoption of more distributed and networked architectural
platforms. From year 2000 to 2010, the automotive software
development cost increased from 2% to 13% of a vehicle’s
total value [83], and the number of lines of code increased
from 1 million to more than 10 million [33], [84], [85]. The
number of ECUs in a standard car has gone from 20 to over
50 in the past decade [84]. The traditional federated architec-
ture, where each function is deployed to one dedicated ECU,
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is shifting to the integrated architecture, in which one function
can be distributed over multiple ECUs and multiple functions
can be supported by one ECU [86]. There is also the trend
to deploy multicore ECUs to support growing functionality
and reduce system cost (by reducing the number of ECUs in
the system and their connection wires) [83]. These trends lead
to significantly more sharing and contention among software
functions over the architectural platform.

Moving forward, software and electronics will play a dom-
inant role in vehicle innovation. Approximately 90% of auto-
motive innovations in 2012 featured software and electronics,
especially in active safety and infotainment systems [87], and
it is predicted that this will continue to be the trend in the
future given the rapid advances in autonomous driving technol-
ogy. With this trend, the complexity of automotive electronic
systems will continue to rise rapidly. This presents tremendous
design and implementation challenges, and calls for a new set
of design automation methods and tools.

1) Model-Based Design and Synthesis: MBD is today
widely accepted as a key enabler to cope with com-
plex system design due to its capabilities to support early
design verification/validation through formal functional mod-
els [2], [88], [89]. Using these models, designers can capture
complex control systems and the plant models they interact
with, and conduct simulations to analyze system behavior
and validate functional properties. Among many functional
modeling tools, the Simulink/Stateflow toolset [90] is popular
in the design of automotive electronic systems, and is based
on the synchronous reactive (SR) semantics. There are other
languages/tools based on SR models, such as Signal, Lustre,
and Esterel [91].

One important aspect of model-based development is the
capability to synthesize correct and optimal implementations
from high-level functional models. As observed from the cir-
cuit design domain, a robust and efficient synthesis flow
will greatly motivate the adoption of high-level models. For
instance, the quality of logic synthesis tools propelled the
adoption of RTL models while recently the advancement of
high-level synthesis tools have raised the design abstraction to
C/C++ in many cases.

However, synthesizing cyber-physical functional models to
software and hardware implementations remains hindered by
many challenges, in particular those related to system tim-
ing behavior. First, the complexity of timing analysis arises
with the growing complexity and heterogeneity of automo-
tive system functionality and architectural platform. Second,
there is significant uncertainty of timing behavior resulting
from dynamic physical environment, data input and embedded
platform conditions, especially for active safety applications.
Third, there are diverse timing constraints from different
design metrics such as schedulability, control performance,
extensibility and fault tolerance, some of which lead to con-
flicting requirements. For instance, shorter sampling periods
and end-to-end latencies of control loops usually lead to
better sensing and control performance [92], [93], but may
be detrimental to schedulability, extensibility and security
(as there is less timing slack for adding strong security
techniques [45], [94]).

Current synthesis solutions and practices do not adequately
address these timing challenges. Timing constraints are often
set in an ad-hoc fashion without quantitative analysis of their
impacts on multiple related metrics. Furthermore, the synthe-
sis process is often conducted without continuous and holistic
consideration of timing. For software implementation, while
timing is usually considered during the mapping of software

tasks onto hardware platforms, it is rarely addressed during
the generation of software tasks from the initial functional
models, and thereby leaving a significant gap in the syn-
thesis process. Such issues may lead to infeasible solutions,
long design cycles, and ultimately inferior and error-prone
implementations.

To cope with these challenges, it is critical to develop
new design automation methods and tools that address timing
holistically throughout the synthesis process, consider tim-
ing uncertainty in computation and communication, analyze
timing impact on various design metrics and leverage such
analysis for design space exploration. In [95], algorithms are
proposed for multitask generation of finite state machines with
consideration of timing extensibility and robustness. In [96],
a holistic synthesis flow is proposed for automotive software
development with respect to schedulability, reusability, mod-
ularity, and memory usage. The synthesis flow explores the
multitask generation of dataflow functional models and the
mapping of generated tasks onto multicore platforms, with
explicit timing consideration throughout the synthesis pro-
cess based on a formulation of firing and execution timing
automata. Novel execution time analysis techniques based on
combining machine learning and formal symbolic analysis
show significant promise and have been successfully demon-
strated on automotive software [19], [97]. This collection of
work demonstrates promise in addressing the timing chal-
lenges, and further motivate the development of new synthesis
methodologies and algorithms for next-generation automotive
systems.

2) Human-in-the-Loop Automotive Systems: One of the
outstanding problems in vehicle automation is the car-to-
driver handoff problem. This is the problem where the car
has to disengage from an autonomous mode and the driver
is required to regain control of the vehicle. According to the
Department of Motor Vehicles (DMV),2 such disengagements
are defined as deactivations of the autonomous mode in a situa-
tion where “a failure of the autonomous technology is detected
and requires the driver to take immediate manual control of
the vehicle.” A recent report published by Google indicates
that during the operation of its self-driving cars in the period
from September 24, 2014 through November 30, 2015, there
were 272 “immediate manual control disengagements” [98].
These correspond to situations where the autonomous tech-
nology failed to maintain safe operation of the vehicle and
needed to immediately hand over the control to the driver.
These situations are particularly dangerous because the driver
is out of the control loop and might be performing other tasks
when a handoff is required. In fact, according to a recent study,
drivers usually need 5–8 s in order to safely and comfortably
perform takeover [99]. This stipulates that the design of a
human-in-the-loop control system must take into account of
human factors such as delays in response time.

A foundational challenge for design automation in address-
ing this problem is to find appropriate mathematical models
that also incorporate human factors. Li et al. [28] formu-
lated a human-in-the-loop controller as a composition of three
agents—an autonomous controller, a human operator, and an
advisory controller which determines whether the human or
autonomous controller should be in control of the plant. Fig. 6
illustrates the structure of such a human-in-the-loop controller.
In a situation when disengagement from the autonomous mode
is necessary, the advisory controller will send the correspond-
ing advisory a to some user interface (e.g., audio or video

2DMV’s final statement of reasons.
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Fig. 6. Structure of a human-in-the-loop controller. ES denotes environment
sensing. HS denotes human sensing. HP denotes human perception. u is the
control input to the plant. a is the advisory issued by the advisory controller
to the human operator. n is a notification signal from the advisory controller
to the autonomous controller.

interface). Upon noticing this signal, the driver can take over
control and her control inputs are passed to the vehicle. When
the handoff is successful, the advisory controller notifies the
autonomous part of the system by sending n that it is no longer
controlling the plant. Between the time when the advisory
is issued and the completion of the handoff, the autonomous
controller is responsible for the safe operation of the vehicle.

Motivated by the definition of “limited self-driving
automation” by the National Highway Traffic Safety
Administration [100], four criteria are defined for this
human-in-the-loop controller model corresponding to the
meta-requirements described in Section III-B2. The design
automation problem is then to synthesize such controllers
satisfying these meta-requirements. Instead of modeling the
driver explicitly, the synthesis algorithm considers specific
human factors that are critical to the problem, i.e., driver
response time. Li et al. [28] presented correct-by-construction
approach to controller synthesis that follows the general theme
of “temporal logic motion planning” [101]. The main idea is
to use temporal logic to specify motion objectives and con-
straints, such as the vehicle should reach certain goal regions,
and then derive a motion planner that satisfies these specifica-
tions using automata theory. A novel aspect of the synthesis
algorithm [28] is that it identifies conditions when a car-to-
driver handoff is necessary, uses these conditions to synthesize
an advisory controller, and synthesizes an autonomous con-
troller that ensures safe operation assuming the driver takes
over within a certain response time.

Human actions can also be captured using probabilistic
models. For example, Feng et al. [102] used Markov deci-
sion processes (MDPs) to represent human operators. Two
abstractions are considered.

1) Human behaviors are assumed to be known probability
distributions a priori.

2) Human actions are nondeterministic.
The human operator model is then composed with another
MDP model of an unmanned aerial vehicle. Depending
on the abstraction, operator-dependent optimal control pro-
tocols can be derived by casting the control synthesis
problem into a stochastic two-player game. While the
MDP formalism is a reasonable choice, assuming a priori

knowledge of the probability distributions is unrealistic.
Sadigh et al. [30], [103], [104] took a more data-driven
approach to modeling human behavior. In early work [30],
they show how experimental data collected from a driving
simulator can be used to construct a discrete-time Markov
chain (DTMC). Uncertainties intrinsic to the estimation of
transition probabilities during the construction of the DTMC
is captured by allowing the transition probabilities to lie
in certain convex sets. Using an algorithm that efficiently
checks properties expressed in Probabilistic Computation Tree
Logic over these convex Markov models [29], the effects
of different attention levels on the quality of driving are
formally analyzed. In more recent work [103], [104], they
model human drivers as rational agents optimizing their reward
functions, learn those reward functions from data, and use
the learned functions in synthesizing control for autonomous
vehicles.

Dual to car-to-driver handoff is to have the autonomous
controller intervene when the vehicle driven by a human
driver is in trouble. An example framework is given by
Vasudevan et al. [105], which divides this problem into
two components. The first component predicts the vehicle’s
behaviors based on observations about the driver’s pose and
environment, and the second component uses this informa-
tion to determine when the autonomous controller should
intervene. Experimental evaluation using a car simulator shows
that by incorporating information about driver pose in the con-
struction, the semiautonomous controller outperforms one that
merely treats the driver as a disturbance, including better acci-
dent prevention and not taking over control of the vehicle more
often than necessary.

An important piece in the co-design with human in-the-loop
is an effective communication interface between the human
and the machine. Schirner et al. [106] outlined various kinds of
interfaces and sensor technologies that can be used to augment
a human’s interaction with the physical world. Among these,
context-aware sensing of human intent (HS in Fig. 6) and the
design of an interface for shared governance are particularly
relevant to semiautonomous systems. We envision a holistic
framework that integrates human modeling, sensor technolo-
gies, human–machine interface, embedded system design, and
formal reasoning for future design automation of human CPS.

3) Design for Security and Privacy: With increasing
vehicle intelligence and connectivity, security and privacy
have become pressing concerns for automotive systems.
Koscher et al. [107] and Checkoway et al. [108] success-
fully compromised a production vehicle by hacking into its
engine control system, brake control system, and other elec-
tronic components. The attacks are conducted through internal
CAN buses using packet sniffing, targeted probing, fuzzing
and reverse engineering. CAN is currently the most used pro-
tocol and, unfortunately, also the most attractive protocol for
attackers [109], [110].

Several approaches have been proposed to add message
authentication codes in CAN data frames to provide message
authentication [111]–[115]. However, the limitations on CAN
bus bandwidths and message lengths make it very challenging
to embed security mechanisms without hindering safety and
control applications, especially when the initial designs did not
consider security [111]. Recently, time-triggered communica-
tion protocols such as FlexRay and TTEthernet are proposed
to provide more predictable timing and higher bandwidth than
CAN for automotive systems. In [116] and [117], low cost
and flexible multicast authentication methods are proposed
for time-triggered systems. In [118], authentication methods



SESHIA et al.: DESIGN AUTOMATION OF CPS: CHALLENGES, ADVANCES, AND OPPORTUNITIES 1431

Fig. 7. Control and platform codesign for secure CPSs.

are proposed for time-triggered systems using time-delayed
release of keys, based on a variant of the TESLA proto-
col [119], [120]. In [121], algorithms are proposed to optimize
task allocation, priority assignment and network scheduling
for time-triggered systems with time-delayed release of keys
authentication. While these new protocols have more band-
width and higher speed, adding security updates into existing
designs still remains challenging and has complex impacts on
various design metrics.

To cope with these challenges, it is critical to quantitively
address security from the beginning of the design process and
together with other design objectives. In [45], a set of algo-
rithms is presented to address automotive security from the
level of software tasks, i.e., by assuming a task graph is given
and optimizing task allocation and scheduling with respect to
security and schedulability. The results demonstrate the impor-
tance of considering security during the design process rather
than trying to add security measurement as an afterthought.
However, as stated before in Section IV-B1, the task graph
abstraction does not contain important functional information
that directly affect system security, control performance and
other metrics. To effectively address the automotive security
issue, the consideration has to start at the functional level.

In [94], a cross-layer design framework is proposed to
combine control-theoretic methods at the functional layer and
cybersecurity techniques at the embedded platform layer, and
addresses security together with other design metrics such as
control performance under resource and real-time constraints.
As shown in Fig. 7, control performance and system security
level are measured at the functional layer, while schedulability
is analyzed at the embedded platform layer. To bridge these
metrics, a set of interface variables are introduced, specifically
the sampling period of every control task and the selection
of messages to be encrypted. Intuitively, when the sampling
period of a control task increases, its control performance
decreases while platform schedulability increases with less
frequent activation of the control task. On the other hand,
when the number of messages being encrypted increases, the
system security level increases while platform schedulability
decreases because of the increased overhead. Furthermore,
the sampling periods may have to increase for schedula-
bility concern thereby worsening the control performance.
These relations are quantitatively modeled in the codesign
formulation in [94].

V. CONCLUSION

This paper has presented a view of the challenges and
opportunities for design automation of CPSs. We repeat
some of the key points here. In our opinion, the design
challenges for today’s CPS stem from the following combi-
nation of characteristics: hybrid, heterogeneous, distributed,

large-scale, dynamic, adaptive, and human-in-the-loop. To
design dependable and secure systems with these character-
istics, we believe that we need design automation tools to
have the following combination of features: cross-domain,
component-based, learning-based, time-aware, trust-aware,
and human-centric. We presented a sampling of recent efforts
and opportunities, including combining MBD with data-driven
learning, design automation for human CPS, component-based
design methodologies, and design for CPS security and pri-
vacy. Motivating applications from the automotive, smart grid,
and smart buildings domains illustrate these topics.

Will a durable design methodology, such as the RTL design
flow, emerge for CPSs? It is hard to tell for sure, given the het-
erogeneity of CPS. However, the surest trend, at the moment,
is the confluence of data-driven and MBD methods. It is our
opinion that this trend holds the beginnings of an exciting
future for the design automation of CPS.
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I. Mezić, “A methodology for meta-model based optimization in build-
ing energy models,” Energy Build., vol. 47, pp. 292–301, Apr. 2012.

[64] B. Eisenhower, Z. O’Neill, V. A. Fonoberov, and I. Mezić, “Uncertainty
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